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Chapter 1

Phonons in nanostructures

There are no such things as applied sciences, only applications of
sciences.
Louis Pasteur, 1872

1.1 Phonon effects: fundamental limits on carrier
mobilities and dynamical processes

The importance of phonons and their interactions in bulk materials is well known to
those working in thdields of solid-state physics, solid-state electronics, optoelec-
tronics, heat transport, quantum electronics, and superconductivity.

As an example, carrier mobilities and dynamical processes in polar semiconduc-
tors, such as gallium arsenide, are in many cases determined by the interaction of
longitudinal optical (LO) phonons with charge carriers. Consider carrier transport
in gallium arsenide. For gallium arsenide crystals with low densities of impurities
and defects, steady state electron velocities in the presence of an external electric
field are determined predominantly by the rate at which the electrons emit LO
phonons. More spefically, an electron in such a polar semiconductor will accelerate
in response to the external electffiield until the electrois energy is large enough for
the electron to emit an LO phonon. When the elecs@mergy reaches the threshold
for LO phonon emissior- 36 meV in the case of gallium arsenidethere is a
significant probability that it will emit an LO phonon as a result of its interaction
with LO phonons. Of course, the electron will continue to gain energy from the
electricfield.

In the steady state, the processes of electron energy loss by LO phonon emission
and electron energy gain from the electfield will come into balance and the
electron will propagate through the semiconductor with a velocity known as the
saturation velocity. As is well known, experimental values for this saturated drift
velocity generally fall in the range 1&m s to 1 cm s™L. For gallium arsenide
this velocity is about % 10’ cm s~ and for indium antimonide & 10’ cm s72,
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1 Phonons in nanostructures

For both these polar semiconductors, the process of LO phonon emission plays a
major role in determining the value of the saturation velocity. In non-polar materials
such as Si, which has a saturation velocity of aboutd® s, the deformation-
potential interaction results in electron energy loss through the emission of phonons.
(In Chapter 5 both the interaction between polar-optical-phonons and eleetrons
known as the Fahlich interaction- and the deformation-potential interaction will
be ddined mathematically.)

Clearly, in all these cases, the electron mobility will bituenced strongly by the
interaction of the electrons with phonons. The saturation velocity of the carriers in
a semiconductor provides a measure of how fast a microelectronic device fabricated
from this semiconductor will operate. Indeed, the minimum time for the carriers to
travel through the active region of the device is given approximately by the length
of the device- that is, the length of the so-called gatelivided by the saturation
velocity. Evidently, the practical switching time of such a microelectronic device
will be limited by the saturation velocity and it is clear, therefore, that phonons play
a major role in the fundamental and practical limits of such microelectronic devices.
For modern integrated circuits, a factor of two reduction in the gate length can be
achieved in many cases only through building a new fabrication facility. In some
cases, such a building project might cost a billion dollars or more. The importance
of phonons in microelectronics is clear!

A second example of the importance of carf@ronon interactions in modern
semiconductor devices is given by the dynamics of carrier capture in the active
quantum-well region of a polar semiconductor quantum-well laser. Consider the
case where a current of electrons is injected over a barrier into the quantum-well
region of such a laser. For the laser to operate, an electron must lose enough energy
to be‘captured by the quasi-bound state which it must occupy to participate in
the lasing process. For many quantum-well semiconductor lasers this means that
the electron must lose an energy of the order of a 100 meV or more. The energy
loss rate of a carrier also known as the thermalization rate of the carren
a polar-semiconductor quantum well is determined by both the rate at which the
carriefs energy is lost by optical-phonon emission and the rate at which the carrier
gains energy from optical-phonon absorption. This latter rate can befisagrti
in quantum wells since the phonons emitted by energetic carriers can accumulate
in these structures. Since the phonon densities in many dimensionaliynen
semiconductor devices are typically well above those of the equilibrium phonon
population, there is an appreciable probability that these non-equilibriomhot
—phonons will be reabsorbed. Clearly, the net loss of energy by an electron in such
a situation depends on the rates for both phonon absorption and phonon emission.
Moreover, the lifetimes of the optical phonons are also important in determining the
total energy loss rate for such carriers. Indeed, as will be discussed in Chapter 6, the
longitudinal optical (LO) phonons in GaAs and many other polar materials decay
into acoustic phonons through the Klemerbannel. Furthermore, over a wide



1.2 Devices with nanostructure components 3

range of temperatures and phonon wavevectors, the lifetimes of longitudinal optical
phonons in GaAs vary from a few picoseconds to about 10 ps (Bhatt 1994).
(Typical lifetimes for other polar semiconductors are also of this magnitude.) As
a result of the Klemenschannel, thehot phonons decay into acoustic phonons in
times of the order of 10 ps. The LO phonons undergoing decay into acoustic phonons
are not available for absorption by the electrons and as a result of the Klemens
channel the electron thermalization is more rapid than it would be otherwise; this
phenomenon is referred to as tit-phonon-bottleneck efféct

The electron thermalization time is an important parameter for semiconductor
quantum-well lasers because it determines the minimum time needed to switch the
laser from arfon’ state to arioff’ state; this occurs as a result of modulating the
electron current that leads to lasing. Since the hot-phonon population frequently
decays on a time scale roughly given by the LO phonon decay rate (Das Sarma
et al, 1992), a rough estimate of the electron thermalization tinaad therefore
the minimum time needed to switch the laser from'an state to arioff’ state—
is of the order of about 10 ps. In fact, typical modulation frequencies for gallium
arsenide quantum-well lasers are about 30 GHz. The modulation of the laser at
significantly higher frequencies will be limited by the carrier thermalization time
and ultimately by the lifetime of the LO phonon. The importance of the phonon in
modern optoelectronics is clear.

The importance of phonons in superconductors is well known. Indeed, the
BardeerCooperSchrieffer (BCS) theory of superconductivity is based on the
formation of bosons from pairs of electrorsknown as Cooper pairs bound
through the mediating interaction produced by phonons. Many of the theories
describing the so-called high-critical-temperature superconductors are not based on
phonon-mediated Cooper pairs, but the importance of phonons in many supercon-
ductors is of little doubt. Likewise, it is generally recognized that acoustic phonon
interactions determine the thermal properties of materials.

These examples illustrate the pervasive role of phonons in bulk materials.
Nanotechnology is providing an ever increasing number of devices and structures
having one, or more than one, dimension less than or equal to abo&hf®@oms.

The question naturally arises as to the effect of dimensiondircament on the
properties on the phonons in such nanostructures as well as the properties of the
phonon interactions in nanostructures. The central theme of this book is the descrip-
tion of the optical and acoustic phonons, and their interactions, in nanostructures.

1.2 Tailoring phonon interactions in devices with
nanostructure components

Phonon interactions are altered unavoidably by the effects of dimensiorfatie&on
ment on the phonon modes in nanostructures. These effects exhibit some similarities



1 Phonons in nanostructures

to those for an electron céined in a quantum well. Consider the well-known
wavefunction of an electron in afinitely deep quantum well, of width, in the
z-direction. The energy eigenstaté#g(z) may be taken as plane-wave states in the
directions parallel to the heterointerfaces and as bound states iffigitely deep
quantum well in thez-direction:

v ehn 2 k 11

72) = ——— | — sink;z, .

0@ == [ sink, (1.1)
wherer andk; are the position vector and wavevector components in a plane
parallel to the interfacek; = nx/L,, andn = 1,2,3,... labels the energy

eigenstates, whose energies are

hZ(kH)Z h2n2n2
2m 2mLz -

Enk)) = (1.2)

A is the area of the heterointerface over which the electron wavefunction is
normalized. Clearly, a major effect of dimensional inement in thez-direction

is that thez-component of the bulk continuum wavevector is restricted to integral
multiples ofr /L. Stated in another way, the phase space is restricted.

As will be explained in detail in Chapter 7, the dimensional fomement of
phonons results in similar restrictions in the phase space of the phonon wavevector
g. Indeed, we shall show that the wavevectors of the optical phonons in a dielectric
layer of thickness ; are given byy, = nz/L; (Fuchs and Kliewer, 1965) in analogy
to the case of an electron in arfiimtely deep quantum well. In fact, Faset al.

(1988) used Raman scattering techniques to show that the wavewgctensr /L ;

of optical phonons cdimed in a ten-monolayer-thick AlAs/GaAs/AlAs quantum

well are so sensitive to changeslip that a one-monolayer change in the thickness

of the quantum well is readily detectable as a changg!ihese early experimental
studies of Fasoét al. (1988) demonstrated not only that phonons areficed in
nanostructures but also that the measured phonon wavevectors are well described by
relatively simple continuum models of phonon Goement.

Since dimensional cdimement of phonons restricts the phase space of the
phonons, it is certain that carrigthonon interactions in nanostructures will be
modified by phonon cdinement. As we shall see in Chapter 7, the so-called di-
electric and elastic continuum models of phonons in nanostructures may be applied
to describe the deformation-potential Rlich, and piezoelectric interactions in a
variety of nanostructures including quantum wells, quantum wires, and quantum
dots. These interactions play a dominant role in determining the electronic, optical
and acoustic properties of materials (Mighal, 1999; Dutta and Stroscio, 1998b;
Dutta and Stroscio, 2000); it is clearly desirable for models of the properties
of nanostructures to be based on an understanding of how the above-mentioned
interactions change as a result of dimensionaffio@ment. To this end, Chapters
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8, 9 and 10 of this book describe how the dimensionafioement of phonons in
nanostructures leads to médations in the electronic, optical, acoustic, and su-
perconducting properties of selected devices and structures, including intersubband
quantum-well semiconductor lasers, double-barrier quantum-well diodedijlthin-
superconductors, and the thin-walled cylindrical structures found in the biological
structures known as microtubulin. Chapters 8, 9, and 10 also provide analyses of the
role of collective effects and non-equilibrium phonons in determining hot-carrier
energy loss in polar quantum wires as well as the use of rsstaliconductor
structures to tailor carriephonon interactions in nanostructures. Moreover, Chapter
10 describes how cdimed phonons play a critical role in determining the properties

of electronic, optical, and superconducting devices containing nanostructures as
essential elements. Examples of such phonon effects in nanoscale devices include:
phonon effects in intersubband lasers; the effect ofioed phonons on the gain

of intersubband lasers; the contribution of iaed phonons to the valley current in
double-barrier quantum-well structures; phonon-enhanced population inversion in
asymmetric double-barrier quantum-well lasers; andiced phonon effects in thin

film superconductors.



Chapter 2

Phonons in bulk cubic crystals

The Creator, if He exists, has a special preference for beetles.
J.B.S. Haldane, 1951

2.1 Cubic structure

Crystals with cubic structure are of major importance inftekls of electronics and
optoelectronics. Indeed, zincblende crystals such as silicon, germanium, and gallium
arsenide may be regarded as two face-centered cubic (fcc) lattices displaced relative
to each other by a vectga/4, a/4, a/4), wherea is the size of the smallest unit of

the fcc structure. Figure 2.1 shows a lattice with the zincblende structure.

A major portion of this book will deal with phonons in cubic crystals. In
addition, we will describe the phonons in so-called isotropic media, which are
related mathematically to cubic media as explained in detail in Section 7.2. The
remaining portions of this book will deal with crystals ofintzite structure, dened
in Chapter 3. More speftcally, the primary focus of this book concerns phonons
in crystalline structures that are dimensionally ftoed in one, two, or three
dimensions. Such one-, two-, and three-dimensionaficement is realized in
quantum wells, quantum wires, and quantum dots, respectively. As a preliminary
to considering phonons in dimensionally fioed structures, the foundational case
of phonons in bulk structures will be treated. The reader desiring to supplement this
chapter with additional information on the basic properties of phonons in bulk cubic
materials willfind excellent extended treatments in a humber of texts including
Blakemore (1985), Ferry (1991), Hess (1999), Kittel (1976), Omar (1975), and
Singh (1993).

2.2 Ionic bonding — polar semiconductors

As is well known, the crystal structure of silicon is the zincblende structure shown
in Figure 2.1. The covalent bonding in silicon does not result in any net transfer
of charge between silicon atoms. More sfiieeily, the atoms on the two displaced

6



2.3 Linear-chain model and macroscopic models 7

face-centered cubic (fcc) lattices depicted in Figure 2.1 have no exces$iat de

of charge relative to the neutral situation. This changes dramatically for polar
semiconductors like gallium arsenide, since here the ionic bonding results in charge
transfer from the Group V arsenic atoms to the Group Il gallium atoms: Since
Group V atoms havdive electrons in the outer shell and Group Ill atoms have
three electrons in the outer shell, it is not surprising that the gallium sites acquire
a net negative charge and the arsenic sites a net positive charge. In binary polar
semiconductors, the two atoms participating in the ionic bonding carry opposite
chargesge* and —e*, respectively, as a result of the redistribution of the charge
associated with polar bonding. In polar materials such ionic bonding is characterized
by values ofe* within an order of magnitude of unity. In the remaining sections of
this chapter, it will become clear that is related to the readily measurable or known
ionic masses, phonon optical frequencies, and high-frequency dielectric constant of
the polar semiconductor.

2.3  Linear-chain model and macroscopic models

The linear-chain model of a one-dimensional diatomic crystal is based upon a system
of two atoms with massesn and M, placed along a one-dimensional chain as
depicted in Figure 2.2. As for a diatomic lattice, the masses are situated alternately
along the chain and their separationaisOn such a chain the displacement of
one atom from its equilibrium position will perturb the positions of its neighboring
atoms.

Figure 2.1. Zincblende
crystal. The white spheres
and black spheres lie on
/ different fcc lattices.

\

yd
v
~+"

Figure 2.2. One-dimensional linear-chain representation of a diatomic lattice.



2 Phonons in bulk cubic crystals

In the simple linear-chain model considered in this section, it is assumed that
only nearest neighbors are coupled and that the interaction between these atoms is
described by HooKs law; the spring constat is taken to be that of a harmonic
oscillator. This model describes many of the basic properties of a diatomic lattice.
However, as will become clear in Chapter 6, it is essential to supplement the so-
calledharmoni¢ interactions with anharmonic interactions in order to describe the
important process of phonon decay.

2.3.1 Dispersion relations for high-frequency and
low-frequency modes

To model the normal modes of this system of masses, the atomic displacements
along the direction of the chainthe so-called longitudinal displacements of each
of the two types of atoms are taken to be

Uy = Alei (2rqga—owt) (2_1)
and
Up i1 = Azei[(2r+l)qa—wt] (22)

whereq is the phonon wavevector amdlis its frequency. In the nearest-neighbor
approximation, these longitudinal displacements satisfy

m(d2uy /dt?) = —a (U — Uzr—1) — ar(Uzr — Uzr41)
= a(Uzr+1 + Uzr—1 — 2U2r) (2.3)
and
M (d%Uzr +1/dt%) = —a(Ugr41 — Uzr) — & (Ugr41 — Ugr+2)
= a(Ugr42 + Uy — 2U2r41). (2.4)

The signs in the four terms on the right-hand sides of these equations are
determined by considering the relative displacements of neighboring atoms. For
example, if the positive displacement wf; is greater than that aiy 1 there is
a restoring force-a (uz 11 — Uz ). Hence

—Mw? A = a Ax(e92 + e7193) _ 2y A (2.5)
and
—Maw?Ay = a Ay (€92 + e7193) _ 2y A, (2.6)

Eliminating A1 and Ay,

2_ (1.1 1 1)? 4sifga]’?
w_a(m+M +o m+M p—y . 2.7)

This relationship between frequency and wavevector is commonly called a dis-
persion relation. The higher-frequency solution is known as the optical mode
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since, for many semiconductors, its frequency is in the terahertz range, which
happens to coincide with the infrared portion of the electromagnetic spectrum.
The lower-frequency solution is known as the acoustic mode. More precisely, since
only longitudinal displacements have been modeled, these two solutions correspond
to the longitudinal optical (LO) and longitudinal acoustic (LA) modes of the
linear-chain lattice. Clearly, the displacements along this chain can be described
in terms of wavevectorg in the range from-s/2a to 7 /2a. From the solution
for w, it is evident that over this Brillouin zone the LO modes have a maximum
frequency [2(1/m + 1/M)]¥?2 at the center of the Brillouin zone and a minimum
frequency(2«/ m)1/2 at the edge of the Brillouin zone. Likewise, the LA modes have
a maximum frequency2«e/M)¥/2 at the edge of the Brillouin zone and a minimum
frequency equal to zero at the center of the Brillouin zone.

In polar semiconductors, the massasand M carry opposite charges! and
—e*, respectively, as a result of the redistribution of the charge associated with
polar bonding. In polar materials such ionic bonding is characterized by values of
e* equal to 1, to an order-of-magnitude. When there is an elefttid E present
in the semiconductor, it is necessary to augment the previous force equation with
terms describing the interaction with the charge. In the long-wavelength limit of the
electricfield E, the force equations then become

—mw?uy = m(d?uy /dt?) = a(Uzr 41 + Ugr—1 — 2up) + €°E
= (€292 4 yuy _1 — 20Uy + €E (2.8)

and

~Mo?uy 11 = M(d?Uz 11/dt?) = a(Uzr12 + Uz — 2Uzr11) — €°E
= a(l+e 293Uy o — 20Uy 41 — e°E. (2.9)

Regarding the phonon displacements, in the long-wavelength limit there is no
need to distinguish between the different sites for a given mass type since all atoms
of the same mass are displaced by the same amount. In thisdimit0. Denoting
the displacements on even-numbered sitesibgnd those on odd-numbered sites
by uy, in the long-wavelength limit the force equations reduce to

—Mw?uy = 20(Up — U1) + €°E (2.10)
and
—~Mw?uz = 20(ug — up) — €°E. (2.11)

Adding these equations demonstrates thatw?u; — Mw?u, = 0 and it is clear
thatmu, = —Muy; thus

m
—Mow?u = 2o (—Mul — ul) +€e‘E (2.12)
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and
2 m "
—Mow“uy = 2a u1+mu1 — €'E; (2.13)
accordingly,
—(0? — w3)uy = €'E/m (2.14)
and
—(0? — wd)up = —€"E/M (2.15)

wherea% = 2a(1/m+ 1/M) is the resonant frequency squared, in the absence of
Coulomb effects; that is, fa&* = 0. The role ofe* in shifting the phonon frequency
will be discussed further in the next section.

Clearly, the electric polarizatio”R produced by such a polar diatomic lattice is
given by

N N - 1 Ne? (/1 1
p Neu_Ne—t) e <— + —)E, (2.16)
€(00) €(00) €(00) (wg —w?)\Mm M
whereu = u; — uz, N is the number of pairs per unit volume, aertl is as
defined previously. This equation may be rewritten to show that it describes a driven
oscillator:

11
(@3 —w?)u=¢ (E + M) E. (2.17)

2.32 Displacement patterns for phonons

As discussed in subsection 2.3.1, in the liopit> 0 the displacementsi; andusy,

of the optical modes satisirmu; = Muz and the amplitudes of the two types of
mass have opposite signs. That is, for the optical modes the atoms vibrate out of
phase, and so with their center of méiged. For the acoustic modes, the maximum
frequency is(2¢/M)1/2. This maximum frequency occurs at the zone edge so that,
near the center of the zone,is much less tha2«/M)1/2. From subsection 2.3.1,

the ratioA2/ A1 may be expressed as

A2 20cosga 20— mw?
Ai 2« —Mw? 2ocosga’

(2.18)

and it is clear that the ratio of the displacement amplitudes is approximately equal
to unity for acoustic phonons near the center of the Brillouin zone. Thus, in contrast
to the optical modes, the acoustic modes are characterized by in-phase motion of
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the different massem and M. Typical mode patterns for zone-center acoustic
and optical modes are depicted in Figures &.3(b). The transverse modes are
illustrated here since the longitudinal modes are moffecdit to depict graphically.

The higher-frequency optical modes involve out-of-plane oscillations of adjacent
ions, while the lower-frequency acoustic modes are characterized by motion of
adjacent ions on the same sinusoidal curve.

2.3.3 Polaritons

In the presence of a transverse elecfrald, transverse optical (TO) phonons of

a polar medium couple strongly to the electfield. When the wavevectors and
frequencies of the electriteld are in resonance with those of the TO phonon, a
coupled phonofphotonfield is necessary to describe the system. The quantum of
this coupledfield is known as the polariton. The analysis of subsection 2.3.1 may
be generalized to apply to the case of transverse displacements. In particular, for a
transversdield E, the oscillator equation takes the form

) oo Ne? /1 1
(a)TO—w)P—E(OO) —t)E (2.19)

WheI’Ew% of subsection 2.3.1 has been designa&ég = 2a(1/m+ 1/M) since
the resonant frequency in the absence of Coulomb effetdss 0, corresponds to

(b) ®

Figure 2.3. Transverse displacements of heavy ions (large disks) and light ions
(small disks) for ) transverse acoustic modes, abjlttansverse optical modes
propagating in thg-direction.
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the transverse optical frequency. As will become apparent later in this section, the
LO phonon frequency squared differs from the TO phonon frequency squared by an
amount proportional te*2.

According to the electromagnetic wave equati6fD/9t? = c2V2E, where
D = E + 4 P, the dispersion relation describing the coupling offileéd E of the
electromagnetic wave to the electric polarizat®mof the TO phonon is

c?9%E = w?(E + 47 P) (2.20)
or, alternatively,
47 w’P = (c°q® — w?)E, (2.21)

where waves of the forng @"~“Y have been assumed. The driven oscillator
equation and the electromagnetic wave equation have a joint solution when the
determinant of the cof€ients of thefieldsE and P vanishes,

w? — c2q2 47 ?
Ne? /1 1 ) . | =0 (2.22)
€(00) (EJF M) (@7 — %)
At g = 0, there are two rootg» = 0 and
Ne? /1 1
2 2 2
w :wTO+4n@(E+M) :wLO‘ (223)

The dielectric functior (w) is then given by

D(w) 1 47 Pe(w) = 4n P(w)

€@ =Fw = E(w) E(w)
2
_ A7 Pe(w) A N e* <£ N i) (2.24)
E(w) (@25 — w?) €(c0)\m = M

where the polarization due to the electronic contributiBsiw), has been included
as well as the polarization associated with the ionic contribufti).

As is customary, the dielectric constant due to the electronic response is denoted
by

A7 Pe(w)

E(OO) =1+ W,

(2.25)

and it follows that

4 Ne2 /1 1
e(w) = €(00) + (a)%o "2 €(0) (a + M) (2.26)

The so-called static dielectric constai0) is then given by
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47 Ne? /1 1
0) = I R 2.27
6()—6(00)‘1'60%06( )( +M> (2.27)

From these last two results it follows straightforwardly that
[€(0) — e(00)]wFq
(@F — ©?)
€(0) — €(00)
1- a)z/a)%o '

e(w) = €(00) +

= ¢e(00) + (2.28)

From electromagnetic theory it is known that the dielectric functiGn) must
vanish for any longitudinal electromagnetic disturbance to propagate. Accordingly,
the frequency of the LO phonons, o, must be such that(w o) = 0; from the last
equation, this condition implies that

€(0) — €(c0)

e(wL0) = 0 = €(c0) + (2.29)
1- “’Eo/ “’%o
or, equivalently,
€(0) 12
wLo = [ © :| wTO. (2.30)
€(00)
It then follows that
0) — 2 _
(@) = €(00) + €(0) 26(020) — €(00) + (wL0/wT0) ez(oo; €(00)
1-w/wtq 1- w/wtq
21
— (oo 114 (wL0/@T0) :
1- wz/a)-ro
_ w%o — w? ")Eo - w%o
=¢€(00) [ - 5T — >
Wro — @ Wro — @
0)2 — wz
= €(00) 52—, (2.31)
a)To —
or alternatively
€@) _ oo 0" (2.32)
€(o0) a)%o — w?

In the special case wheuse= 0, this relation reduces to the celebrated Lyddane
SachsTeller relationship
€0 a)EO

o0 o (2.33)

Whenw = w o the dielectric constant vanishesw o) = 0; as stated above,
this condition is familiar from electromagnetics as a requirement for the propagation
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of alongitudinal electromagnetic wave. That is, a longitudinal electromagnetic wave
propagates only at frequencies where the dielectric constant vanishes; accordingly,
w0 is identfied as the frequency of the LO phonon. From the relation

2 2
wiA + 47 ( )<_+_)_w ,

it follows that wto = wL o for zone-center phonons in materials wih = 0,

this is just as observed in non-polar materials such as silicon. In polar materials
such as GaAs there is a gap betweefy andw| o, associated with the Coulomb
energy density arising from. Whenw = wto, € (wto) "t = 0 and the pole ir (w)
reflects the fact that electromagnetic waves with the frequency of the TO phonon are
absorbed. Throughout the intervalro, w 0), €(w) is negative and electromagnetic
waves do not propagate.

2.3.4 Macroscopic theory of polar modes in cubic crystals

As was apparent in subsections 2.3.1 and 2.3.3, polar-optical phonon vibrations
produce electridields and electric polarizatiofields that may be described in
terms of Maxwells equations and the driven-oscillator equations. Loudon (1964)
advocated a model of optical phonons based on these macrosiggcthat has
had great utility in describing the properties of optical phonons in so-called uniaxial
crystals such as iwtzite crystals. The Loudon model for uniaxial crystals will be
developed more fully in Chapters 3 and 7. In this section, the concepts underlying
the Loudon model will be discussed in the context of cubic crystals.

From the pair of Maxwelk equations,

14B 14D
VXxE+-—=0 and VxB->—=], (2.34)
c ot c ot
it follows that
13(V x B) ,. 13°D
Vx(VXE)+-———"=V(V-E)=VE+ 55— =0, (2.35
(VX BE) + o v-E) T2 (2.35)

where the source curreni, has been taken to equal zero. Then siRceD =
V-E+ 47V -P=4nrp = 0, it follows that
1 9%E 19%P
2 _
Assuming thatP and E both have spatial and time dependences of the form
€ @r=oY this last result takes the form

£ _ ~4rla@-P) — ?P/c?]

(2.37)
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The conditiong - P = 0 corresponds to the transverse wave; in this case,

— 47 w?P/c?
E=———. 2.38
P — w?/2 (2.38)
From Appendix A E andP are also related through
1 0) — 2
4 wfo — @2
thus
2_ 2,02 0) — 2
) (2.40)
w?/c wfo — w?
or, equivalently,
202 2 ¢(0) — w?
q <23 _ c’)Tof(z) 6026(00). (2.41)
@ W0 — @

For longitudinal wavesy - P = q P, so thatg = (q/P)P, and it follows that

_ 4r0’P/c? 47 qPq
_ 4me®P/c? 47 q%P

47T 0)2 2
A A A

= —4nP. (2.42)
Then
B 2
p_ 1 ][O . e(oo)z]wTo + [€e(00) — 1]} E
4 W5 — @
_ 2
_ { [€(0) . E(OO)Z]a)TO 4 fe(oo) — 1]} P (2.43)
WTo — @

or, equivalently,

B TR
w = WTO €(00) = WLO,

and the LyddaneSachsTeller relation is recovered once again! In Chapter 3, we
shall return to the Loudon model to describe uniaxial crystals of tingzaite type.



Chapter 3

Phonons in bulk wirtzite crystals

Next when I cast mine eyes and see that brave vibration, each
way free; O how that glittering taketh me.
Robert Herrick, 1648

3.1  Basic properties of phonons in wiirtzite structure

The GaAlN-based semiconductor structures are of great interest in the electronics
and optoelectronics communities because they possess large electronic bandgaps
suitable for fabricating semiconductor lasers with wavelengths in the blue and
ultraviolet as well as electronic devices designed to work at elevated operating
temperatures. These IlI-V nitrides occur in both zincblende aindaite structures.

In this chapter, the irtzite structures will be considered rather than the zincblende
structures, since the treatment of the phonons in thésézite structures is more
complicated than for the zincblendes. Throughout the remainder of this book,
phonon effects in nanostructures will be considered for both the zincblendes and
wilrtzites. This chapter focuses on the basic properties of phonons in buikite
structures as a foundation for subsequent discussions on phononértztev
nanostructures.

The crystalline structure of aiwtzite material is depicted in Figure 3.1. As in
the zincblendes, the bonding is tetrahedral. Thietrite structure may be generated
from the zincblende structure by rotating adjacent tetrahedra about their common
bonding axis by an angle of 60 degrees with respect to each other. As illustrated in
Figure 3.1, viirtzite structures have four atoms per unit cell.

The total number of normal vibrational modes for a unit cell wsthtoms in
the basis is 8 As for cubic materials, in the long-wavelength limit there are three
acoustic modes, one longitudinal and two transverse. Thus, the total number of
optical modes in the long-wavelength limit is 3- 3. These optical modes must,
of course, appear with a ratio of transverse to longitudinal optical modes of two.

16
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The numbers of the various long-wavelength modes are summarized in Table 3.1.
For the zincblende case,= 2 and there are six modes: one LA, two TA, one
LO and two TO. For the wrtzite case,s = 4 and there are 12 modes: one LA,
two TA, three LO and six TO. In the long-wavelength limit the acoustic modes are
simple translational modes. The optical modes forlatmite structure are depicted
in Figure 3.2.
From Figure 3.2 it is clear that th&; and E; modes will produce large electric
polarizationfields when the bonding is ionic. Such large polarizafieids result
in strong carrieroptical-phonon scattering. These phonon modes are known as
infrared active. As we shall see in Chapter 5,fileéds associated with these infrared
modes may be derived from a potential describing the capiemon interaction of

Figure 3.1. Unit cell of the
hexagonal wirtzite crystal.

Table 3.1. Phonon modes associated with a unit cell
havings atoms in the basis.

Type of mode Number of modes
Longitudinal acoustic (LA) 1
Transverse acoustic (TA) 2

All acoustic modes 3
Longitudinal optical (LO) s—1
Transverse optical (TO) -2

All optical modes 3

3
All modes 3
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such modes. In Chapter 5, this carAginonon interaction potential will be idefigd
as the Fohlich interaction. The dispersion relations for the 12 phonon modes of the
wilrtzite structure are depicted in Figure 3.3.

The low-frequency behavior of these modes nearthmint makes it apparent
that three of these 12 modes are acoustic modes. This behavior is, of course,
consistent with the number of acoustic modes idestiin Table 3.1.

32  Loudon model of uniaxial crystals

As discussed in subsection 2.3.4, Loudon (1964) advanced a model for uniaxial
crystals that provides a useful description of the longitudinal optical phonons in
wilrtzite crystals. In Loudds model of uniaxial crystals such as GaN or AIN, the
angle between the c-axis agds denoted by, and the isotropic dielectric constant

of the cubic case is replaced by dielectric constants for the directions parallel and
perpendicular to the c-axisy (w) ande | (w) respectively. That is,

Figure 3.2. Optical phonons in virtzite structure. From Gorczye al. (1995),
American Physical Society, with permission.
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EL(Q)) 0 0
e(w) = 0 € (w) 0 (3.1)
0 0 € (a))
with

W2 — w2 W2 — w2

el (w) = 6L(OO)ZiLO’L and  €)(w) = ¢ (00)2720'”,
R (oM wT = W1

(3.2

as required by the Lyddan8achsTeller relation. The c-axis is frequently taken to
be in thez-direction and the dielectric constant is then sometimes labeled by the
z-coordinate; that iss) (w) = €;(w). Figure 3.4 depicts the two dielectric constants
for GaN as well as those for AIN.

In such a uniaxial crystal, there are two types of phonon wave: (a) ordinary waves
where for anyd both the electridield E and the polarizatiof® are perpendicular
to the c-axis andy simultaneously, and (b) extraordinary waves, for which the
orientation ofE and P with respect tog and the c-axis is more complicated. As
discussed in subsection 2.3.4, the ordinary wave Eiasymmetry, is transverse,
and is polarized in the -plane. There are two extraordinary waves, one associated
with the L -polarized vibrations and having; symmetry and the other associated
with ||-polarized vibrations and havirtgy symmetry. Fop = 0, one of these modes
is the A1(LO) mode and the other is tHe;(TO) mode. As9 varies between 0 and
/2, these modes evolve to tihg (TO) andE1(TO) modes respectively. For values
of 6 intermediate between 0 amg/'2 they are mixed and do not have purely LO or

r 110 K M 100 r [001] A
o[ 1110 [200] f001]
e e
80 [ T —— e -
s = —
Q
£ 60 |- — -+ - -
>
S
g
g 40 T = = -
o
20 | e — L -
0

Reduced wavevector

Figure 3.3. Phonon dispersion curves for GaN crystal d@frtzite structure. From
Nipko et al. (1998), American Institute of Physics, with permission.
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TO character 0 A; or E; symmetry (Loudon, 1964). Foriwtzite structures at the

" point, it will be obvious in Chapter 7 that only three of the nine optical phonon
modes, theA1(Z) andE1 (X, Y) modes, produce sigincant carrieroptical-phonon
scattering rates. These are the so-called infrared-active modes. For the case of
wirtzite structures, Loudos model of uniaxial crystals is based upon generalizing
Huangs equations, equations (A.8) and (A.9) of Appendix A, and the relationship
of subsection 2.3.4, equation (2.43). Sfieally, for each of these equations there

is a set of two more equations, one in terms of quantities along the c-axis and the
other in terms of quantities perpendicular to the c-axis:

, , v \L2
(wTp, | —©IUL = <—> v €L(0) — €1 (00) wro, 1 EL, 3.3)

4 uN

\V; 1/2
(w%O,II - a)z)u” = (47T,uN> €)(0) — € (00) wro, ) Ey, (3.4)

N 1/2 -1
P, = <—“ ) Ve (0) — ey (00) wro, LUl + [%] Ei. (3.5
uN 172 €(c0) =1
Py = —> Ve 0 — e(00) wro, Uy + | = — } E (3.6)

€11 (GaN)
....... €, (GaN) 7]
'5 — e &5 (AIN)
§ ———— &y (AIN) ]
2
.2
E
8 of
.8
o
_10 |
-20 : ' :
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Figure 3.4. Dielectric constants for GaN; | (GaN) ande12(GaN), and for AIN,
€21 (AIN) andeo,(AIN). From Leeet al. (1998), American Physical Society, with
permission.





